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Abstract. Current methods for evolutionary computation can reliably
address problems for which the dependencies between variables are
limited to a small order k. Furthermore, several recent methods can ad-
dress certain hierarchical problems which feature dependencies between
all variables. In addition to modularity and hierarchy, a third problem
feature that can be exploited when present is repetition. To enable
the study of these problem features in isolation, two test problems for
modularity and hierarchy detection by variable length problems are
introduced. To explore how a variable length method can exploit these
three problem features, a module formation algorithm is investigated.
It is found that the algorithm identifies all three forms of problem
structure to a substantial degree, leading to significant performance
improvements for both the hierarchical and repetitive test problems.
The experimental results indicate that the simultaneous exploitation
of hierarchy and repetition will require both position-specific module
testing and position-independent module use.

Modularity, hierarchy, repetition, SEQ problem, HSEQ problem

1 Introduction

Currently, evolutionary computation can reliably address problems for which
the order of the dependencies between variables is limited to a small number k,
where two variables are called dependent if the fitness contribution of one variable
depends on the setting of the other variable and the order of the dependencies is
the largest number of interdependent variables. Methods that can address this
class of order-k limited problems have been called competent GA’s [3] and include
the fast messy GA [4], the extended compact GA [5], the Bayesian Optimization
Algorithm (BOA) [11], LFDA [9], and EBNA [2].

Apart from order-k limited problems, there are certain specific problems
with higher-order dependencies that can also be addressed. Specifically, problems
with hierarchical structure can feature dependencies up to order k = n. These
dependencies are limited to specific relations, and by virtue of this hierarchical
problems can still be solvable in a scalable manner. Examples of hierarchical
problems that have been described so far include H-IFF [15], H-TRAP [10], and
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H-XOR [15]. Methods such as SEAM [16] and H-BOA [10] can solve difficult
hierarchical problems by exploiting their hierarchical structure.

The class of hierarchical fixed-length problems is of interest because it is the
most complex problem class, measured by the order of dependencies between
variables, that may still be efficiently addressed by currently known evolutionary
algorithms. The class of feasible problems may be further extended however if
variable-length problems can be addressed.

One reason for employing variable length methods is that the length of opti-
mal solutions in a problem may not be known in advance. Furthermore, variable
length methods facilitate the use of translocation [7], i.e. applying optimized
settings from one set of variables to other variables. Translocation exploits the
problem feature of repetition, and can be used to address increasingly large pro-
blem spaces, performing directed exploration of very large search spaces without
considering an exponentially increasing number of states; see also [6].

The above suggests that variable length methods exploiting modularity, hier-
archy, and repetition would provide a valuable extension of the arsenal of me-
thods currently available. A potential in this direction is demonstrated by the
DevRep algorithm [1]; this method was reported to address a 1024-bit version
of the HXOR problem. While HXOR [15] features modularity, hierarchy, and
repetition, the presence of these multiple features leaves open the question of
how these problem features can be exploited in isolation. This question will be
explored here.

To enable the study of modularity, hierarchy and repetition in isolation, two
test problems are introduced: the Sequence problem (SEQ), and the Hierarchical
Sequence problem (HSEQ). SEQ features modularity, but no hierarchy or repe-
tition. HSEQ features hierarchy and thereby modularity, but no repetition. To
study repetition, we employ the OneMax problem [12]. We investigate how mo-
dularity, hierarchy, and repetition can be exploited, and develop a variable length
algorithm for module formation. The operation of the algorithm on the SEQ,
HSEQ, and OneMax problems is studied in experiments. Control experiments
are performed to analyze the necessity of different features of the algorithm.

The structure of the article is as follows. First, a dependency-based classifi-
cation of problems is provided, discussing modularity and hierarchy. Next, the
SEQ and HSEQ problems are introduced. In section 3.1, measures for evaluating
the detection of modularity, hierarchy, and repetition are discussed. The module
formation that will be employed is described in section 4. Results are provided
in section 5, followed by conclusions.

2 A Dependency-Based Classification of Problems

Discrete optimization problems can be classified based on the dependencies bet-
ween the variables in the problem. Two variables are interdependent if and only
if the fitness contribution of one variable depends on the setting of the other
variable. Below, we discuss a classification of problems based on the dependen-
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cies they feature. The notions of modularity and hierarchy employed here are
discussed, and correspond with the different problem classes.

The class of problems that is easiest to address is that for which no dependen-
cies are present between variables. Problems in this class can be solved in linear
time by optimizing each variable in turn. If dependencies up to a limited order
k are present, a variety of modern genetic algorithms can be used to address
the problem in a reliable way. This criterion is closely related to our notion of
modularity. Our modularity concept is based on the criterion that the number of
settings of a module can be reduced, called decomposability [14]. A subset M of
the variables in a problem will be called a module if the number of settings of M
that maximize fitness for at least one setting of the remaining variables is less
than the number of possible settings for M. There is a clear relation between
modularity and order k schemata; in both cases, the dependency of the selected
variables on the remaining variables is reduced.

Hierarchical problems may have dependencies up to order k = n while still
being solvable in an efficient manner. Thus, exploiting hierarchical structure can
permit solving difficult problems that cannot be addressed otherwise.

We will now discuss the notion of hierarchy in more detail. Recall that a
module is defined as a set of variables whose number of settings can be safely
reduced because only some settings occur in optimal solutions. We view hierarchy
as the recursive application of this same principle. Thus, a combination of two
or more modules can be viewed as a single composite module if and only if this
permits a further reduction of the number of possible settings of the variables
involved. A clear demonstration of this principle is given by the Hierarchical IF-
and-only-iF (H-IFF) function [15], which can be addressed efficiently by the fixed
length methods of SEAM [16] and H-BOA [10]. Other examples of hierarchical
problems that can be addressed efficiently include H-XOR [15] and H-TRAP
[10].

The notions of modularity and hierarchy that have been described are charac-
teristics of a problem. In the literature, the concepts of modularity and hierarchy
are often used to describe the operation of a method. The problem-based notions
of modularity and hierarchy provided here are intended to capture the modules
that modular and hierarchical methods should ideally find. Thus, an algorithm
is expected to have good performance if the modules identified by the method
correspond to the modules of the problem.

The modularity and hierarchy concepts provide a strict criterion for deter-
mining which combinations of variables may be called modules; since any com-
bination of variables or modules that is called a module must further reduce the
number of possible variable settings that must be considered, the identification
of modularity and hierarchy effectively reduces the size of the search space that
must be visited, and therefore permits a performance gain.

Repetition is viewed as the presence of optimal substrings that occur multiple
times within an individual. If a problem features repetition, translocation can
in principle confer an advantage. Translocation is normally avoided in genetic
algorithms, as the theoretical foundation aimed that explains the operation of
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the genetic algorithm requires the propagation of schemata at given locations.
If the order of the variables on a genome is non-random however, then patterns
of adjacent bits may carry information that can be usefully applied in other
parts of the string by means of translocation. For example, if a bitstring encodes
natural text using four bits for each letter, then the identification of a string
in which certain letters are much more frequent than others may benefit from
translocation.

3 The SEQ and HSEQ Problems

In this section, two new test problems for the study of modularity and hierarchy
in variable length methods are introduced. Several test problems exist that per-
mit testing whether a method not using translocation can identify modularity
and hierarchy; examples include HIFF and HXOR [15]. Since these problems
feature some degree of repetition however, translocation is expected to be bene-
ficial in addressing these problems. While the combined exploitation of hierarchy
and repetition may be very successful on such problems, as found e.g. in [1], our
aim is to study how modularity and hierarchy may be identified in isolation by
methods permitted to use translocation.

First, we consider the definition of a non-repetitive test problem featuring
modularity. The requirement that the problem should not feature repetition
can be guaranteed by ensuring that within across all optimal individuals, any
combination of two consecutive values may occur in at most one position. This
requirement can be only be satisfied for problems of non-trivial size by using an
arity that is greater than two.

The SEQ problem or Sequence problem is defined as follows. For a string of
length n, there are two global optima: the ascending string A = 0, 1, . . . , n − 1
and the descending string D = n − 1, n − 2, . . . , 0. In this n-ary problem, the
ith variable provides a fitness contribution of 1 if it equals either Ai or Di. In
addition, any two consecutive variables 2j, 2j +1 for 0 < j < n

2 provide an extra
fitness contribution of 2 if they equal A2jA2j+1 or D2jD2j+1. Thus, there are
two levels that contribute fitness: the level of single variables and the level of
consecutive pairs of variables.

The HSEQ problem or Hierarchical Sequence problem is defined by extending
the SEQ problem to a higher number of levels; consecutive pairs of ascending mo-
dules form ascending modules at the next level, and likewise for the descending
modules. By continuing this principle, the highest level features two modules
that equal the global optima A and D. The HSEQ problem is analogous to
HXOR and HIFF; all three problems combine pairs of consecutive modules into
higher-level modules, thereby reducing the number of optimal settings for the
constituent modules from four to two. The HSEQ problem is different however
in that it employs an arity of n for a length-n string. As a result, it features
a much larger search space; the size of the search space is nn, and thus grows
super-exponentially as a function of the string length n.
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It is important to note that to address HSEQ problem effectively, it is ne-
cessary to maintain multiple settings for each combination of variables (two, in
this case) until a global optimum is found; if subsets of the variables are allowed
to independently converge to one setting (ascending or descending numbers), it
becomes increasingly likely with increasing problem size that different subsets
will converge to different choices, thereby ruling out the possibility of finding
an optimum. Part of the structure in the problem can already be exploited by
identifying pairs of variables, and reducing the number of possible settings from
the initial n2 to two; this would amount to the use of modularity. The resulting
number of possibilities that must be maintained in this case is still exponential
in the number of pairs of variables. By using hierarchy however, the problem
can be addressed efficiently. The full potential for efficiency improvement in this
hierarchical problem is exploited by recursively applying the principle of iden-
tifying the optimal settings for each module, thereby identifying correct settings
for modules of exponentially increasing size.

3.1 Measuring Modularity, Hierarchy, and Repetition

In measuring the degree two which the three problem features investigated are
identified, two criteria are of interest. First, the number of correct modules iden-
tified should be high; the more modules are identified, the higher the computa-
tional benefit that can be gained. Second, the number of modules formed that
are not modules of the problem should be as low as possible since the construc-
tion of modules influences the exploration distribution [13], i.e. the distribution
of individuals that will be visited.

To measure repetition, a slightly different approach is necessary; if a method
uses translocation, then maintaining a single instance of a repetitive element is
sufficient. Thus, the number of modules identified does not reflect the degree
to which repetition is exploited. Therefore, we measure the extent to which the
pattern of interest is repeated within the modules formed. Since the length of the
repeated pattern equals one in the case of OneMax, this reduces to measuring
the frequency of the most frequent bit (zero or one) within modules.

4 A Variable-Length Method Exploiting Modularity,
Hierarchy, and Repetition

In the following, we develop a variable-length method designed to exploit mo-
dularity, hierarchy, and repetition. The algorithm maintains a population of
individuals. Individuals are sequences of modules. Initially, the set of available
modules contains the primitives of the problem; {0, 1} for a binary problem, or
{0, 1, . . . n − 1} for the n-variable SEQ or HSEQ problems.

Periodically, a module formation step is performed. The basis for module
formation is provided by the notion of hierarchical modularity that has been
described. Thus, the aim is to identify combinations of variables for which the
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number of optimal settings is reduced compared to the number of possible set-
tings. For reasons of computational efficiency, two main restrictions are placed
on the modules that can be formed: modules can only consist of consecutive
variables, and a module always contains precisely two elements. The main loop
of the algorithm is as follows:

Module Formation Algorithm()
1. pop:=generate random individuals(pop size)
2. for generation=1:no generations{
3. if generation mod frequency == 0
4. module formation(pop,front)
5. pop:=evolve(pop)
6. pop:=local search(pop)
7. if average length(pop) < size factor * initial length
8. update lengths(pop)
9. front:=front∪non dominated(pop)

10. }

Fig. 1. Module Formation Algorithm

The operation of the algorithm will now be detailed. The module formation
procedure first ensures that for any composite modules C=AB present in the
module set, occurrences of the modules combination AB in individuals are re-
placed by a reference to module C, thereby shortening the length of individuals
by one element for each occurrence. Modules only replace occurrences of their
elements however if the absolute position of the occurrence, measured in terms
of the number of preceding primitives (typically bits, but integers here), is iden-
tical to the absolute position at which the module itself was located when it
was formed. The relative position of a module in the sequence of modules that
specifies an individual is simply its index in the sequence.

Next, the module formation set randomly selects two consecutive elements
[AB] from a randomly chosen individual that is part of the front set, and forms
a candidate module C = AB. Thus, the pairs of modules selected as candidate
modules reflect the distribution of module pairs in the population. If multiple
objectives are used, the front accumulates the non-dominated individuals iden-
tified over time. In the current experiments, only fitness is used as an objective,
and front thus accumulates individuals that have improved the maximum fitness
achieved at some point.

If the candidate module C does not already exist as a module, it is tested
as follows. For each individual x, the primitives represented by C temporarily
replace the corresponding primitives of the individual and the individual is eva-
luated. Next, the same primitives are replaced by alternative settings for the
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same absolute positions. Specifically, the module C=AB is compared to all al-
ternative modules combinations A* and *B, where the asterisk (*) is filled in by
every existing module of the same size. If any of these alternative settings result
in an increased evaluation for any objective, the candidate module will not be
formed. If this test is passed for all individuals, the module C=AB is formed
and added to the module set. Furthermore, the module replacement procedure
is invoked for the newly formed module, i.e. occurrences of AB in individuals
at the same absolute position are replaced by C. The use of a position-specific
module-formation test ensures that a particular combination of values is tried
out for the same set of variables in all compared individuals.

After module formation, the algorithm performs a generation of evolution,
using Mahfoud’s deterministic crowding algorithm [8]. The operators of variation
are as follows. The crossover operator used respects the absolute position of the
modules that make up the individuals. It does so by considering all module
boundaries shared by the two parents (i.e. determining which relative positions
correspond in terms of their absolute positions), and selecting a crossover point
randomly from these options.

The first mutation operator randomly selects an element in an individual
and replaces it with a randomly selected module of the same length. The se-
cond mutation operator randomly selects a module and, if possible, replaces
the corresponding elements in the individual at the module’s original position.
Next, optionally, local search is applied. Local search takes each individual, and
optimizes each of its elements in a random order. Optimization consists of con-
sidering all alternative modules of the same length, and randomly selecting one
that achieves the maximum attainable fitness given the remaining variables.

Finally, a mechanism is used to enable the growth of individuals over time.
Initially, individuals contain initial length elements. When elements are repla-
ced by modules, the effective length of the individual remains the same, but
the actual length diminishes as a result of the more compact representation fa-
cilitated by the use of modules. To allow the effective length of individuals to
increase gradually over time, the update length procedure restores the length of
individuals back to the original initial length by adding random elements. This
operation is performed when the average actual length of the population drops
below a threshold.

The algorithm that has been described bears a close relation to existing
algorithms designed to exploit hierarchy, such as SEAM and DevRep. A main
difference with SEAM is the use of a variable length representation, while a main
difference with DevRep is in the use of a position-specific module-formation test.

5 Results

In this section, we investigate the ability of the module formation algorithm to
identify modularity, hierarchy, and repetition in test problems that feature these
characteristics in isolation as far as possible. The experimental settings are as
follows. For methods employing module formation, the initial length parameter
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is set to 16. The population size is 100. Crossover is used with P = 0.8, and
both mutation operators with P = 0.1. Module formation is performed every 25
generations. The parameter size factor = 0.5.

5.1 Modularity

The maximum baseline performance for a module formation method that is
not able to detect modularity is 50% of correct modules; if module formation
randomly selects pairs of consecutive modules, this maximum performance is
obtained if the population solely contains global optima.

The results are shown in figure 2. The graph shows that the number of cor-
rect modules is substantially higher than the number of incorrect modules, and
thus well exceeds the baseline performance. Thus, according to the measurement
criterion employed, the method is able to correctly identify modularity in the
problem. Preliminary experiments suggest that the effect of identifying correct
modules in SEQ on algorithm performance is limited however; the computatio-
nal benefit of identifying interdependent sets of variables is expected to be most
clear in deceptive problems.

5.2 Hierarchy

To test the ability of the module formation algorithm to identify hierarchy,
the method is applied to the HSEQ problem. Again, the evaluation criterion
for module formation consists of counting the number of correct and incorrect
modules formed. The results are given in Figure 2, and show that the number of
correct modules formed grows at a steady pace and then quickly flattens. The
number of incorrect modules formed remains low. While it might be expected
that the correct modules in HSEQ are more difficult to detect, as the modules
range from size 2 to modules representing complete individuals (size 128), the
relation between correct and incorrect modules is in fact higher than for the SEQ
problem. The total number of correct non-primitive modules for the 128-variable
HSEQ problems equals 254.1 The number of correct modules identified (228) is
thus higher, both in absolute and relative terms, than for the SEQ problem; 90%
of the modules present in the 128-variable HSEQ problem are identified.

The search space for 128-HSEQ is of size 128128 = 2896, and thus corresponds
to a 896-bit problem. In addition to being large, there is very little gradient in
this space; in a random string, only 1 in every 64 variables is expected to make
a fitness contribution. Therefore, local search is used to speed up the search;
this renders the problem more comparable to a 128-bit problem again while
maintaining the property that no repetition is present in the problem.

Figure 3 show the performance of the module formation method on the 128-
variable HSEQ problem. The method achieves near optimal performance on
average. Inspection of the runs showed that 8 out of ten runs reached the global
1 The 64 pairs for each direction (ascending and descending) form the leaves of a

binary tree, which therefore has 63 internal nodes.
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Fig. 2. Number of correct and incorrect modules formed on the SEQ (left) and HSEQ
(right) problems.

optimum of 1024. Interestingly, the abrupt change in the module formation graph
(Figure 2) corresponds precisely to the moment at which a global optimum is
reached on average; this suggests that module formation ends when all correct
modules present in the population have been formed.

As a comparison, we apply a genetic algorithm that does not perform module
formation to the same task. To focus on the effect of module formation, the
algorithm is identical to the module formation algorithm, except that no modules
are formed after the module set has been initialized. As a result, the length
of individuals cannot increase, and the initial length of individuals is therefore
made equal to the length required for the problem, i.e. 128 in this case. Thus, the
genetic algorithm receives some prior information about the problem, namely the
required length for the problem, which the module formation algorithm does not
receive. As figure 3 shows, the performance of the genetic method is significantly
less however, and module formation can thus be concluded to have a positive
effect on performance.

Two variants of the module formation algorithm are compared. The first va-
riant uses position-independent operators by using variants of the crossover and
mutation operators that do not respect the alignment of elements of individu-
als, and can thus translocation. In the second control experiment, the module
formation does not test a candidate module at the position where it occurred,
but at all positions within the individual.

Figure 3 shows the results of the control experiments. The use of position-
independent operators does affect performance, but still permits the formation
of useful modules; this algorithm is still very different from the genetic algorithm
in figure 2, as individuals have an initial length of 16, and the substantial perfor-
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Fig. 3. Performance on the 128-variable HSEQ problem for various methods.

mance increase shows that many modules are still formed. This is different for
the control experiment in which the module acceptance test does not respect the
positions; for this method, no modules are formed, and performance is therefore
limited to a maximum of 80, which is quickly attained but not exceeded.

5.3 Repetition

Finally, we study the ability of the module formation method to identify and
exploit repetition. To exploit repetition, translocation is required. Thus, the
position-independent operators used in the previous experiments are used again.
Since the OneMax problem is binary, we use a larger, 1024-bit version, and local
search is not required.

Figure 4 demonstrates the potential benefit of translocation. The standard
module formation algorithm already improves substantially over the genetic al-
gorithm not performing module formation. When translocation is employed, ma-
ximum performance is reached almost immediately. Inspection of the degree of
repetition achieved, as measured by the average relative frequency of the most
frequent primitive, showed that the maximum degree repetition, i.e. 1.0, was
reached and maintained.

It appears that the recursive combination of strings of ones into larger and
larger modules can produce correct solutions to one-max of sizes growing expo-
nentially in the number of generations, but this hypothesis remains to be tested.
Likewise, information about the scalability of the method on modular and hier-
archical problems is of central interest in further evaluating the potential of the
method that has been described.
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Fig. 4. Performance on the 1024-bit OneMax problem.

6 Conclusions

A wide range of problems can currently be reliably addressed by methods from
evolutionary computation. Furthermore, particular subclasses of the remaining
problems can also be addressed efficiently. One such subclass which has recei-
ved recent attention is that of problems featuring hierarchy. Two other problem
features that can improve the efficiency of a search method when exploited are
modularity and repetition. We explore how these problem features may be de-
tected and used to benefit by variable length algorithms.

To study the identification and exploitation of modularity, hierarchy, and
repetition, two new test-problems have been introduced: the SEQ and HSEQ
problems. Existing test problems contain a combination of these features. In
contrast, the new test problems, and the existing OneMax problem, enabled the
study of these problem features in isolation.

A variable length algorithm employing module formation has been described.
In experiments, it was demonstrated that the modules formed by the method
correspond to the modules present in the problems, and the method can thus be
said to detect modularity, hierarchy, and repetition to a substantial degree. For
the HSEQ and OneMax problems, a significant performance gain was achieved
as a result of module formation. While translocation was seen to be useful in the
presence of repetition and no insurmountable obstacle in the hierarchical HSEQ
problem, a position-specific module-acceptance test was found crucial in the
latter problem. These findings suggest that successful independent exploitation
of hierarchy and repetition requires both position-specific module testing and
position-independent module use.
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